
NETS2120 Final Project Report - Java Swingers

Samuel Wang, Seth Sukboontip, Zimo Huang, Sonia Tam

Overview

InstaLite is a social media platform built to emulate Instagram. The platform includes a host of

features such as creating user profiles, associating users with actors based on matching images, posting and

interacting with image content, chatting with friends, and searching for posts and profiles.

The backend was built using Node.js and Java, hosted on Amazon EC2. The databases were hosted

in RDS with large objects such as images stored in S3. The frontend was built using React and TypeScript.

For our team, we had one member focusing on frontend, one focusing on databases and backend, and two

focusing on the backend and frontend integration.

Feature Descriptions and Decisions

Signup

In signup, there are four types of general information that we need to collect about the user: 1) user

details, 2) profile photo, 3) interests in the form of hashtags, and 4) the preferred actor to be associated with.

The first three types of data did not rely on anything else and could be independently collected; however,

the 4th type of data (actor preference) depended on the profile photo submitted. This is because the actors

that we recommend to the users when signing up are based on similarity to the profile photo that they’ve

submitted.

Because of this dependency, we chose to put the first three types of data collection on the first page

of signup. Then once they click the ‘Continue’ button on the bottom right, all the collected data will be sent

to the backend, where the image will be stored in the S3 database. With the given set of actor photos in a

ChromaDB database, we then run a face-matching algorithm to match the user’s provided profile photo to

a set of actor embeddings. We then take the top 5 most similar actors and suggest it to the user in the next

step of the signup process. When the user clicks on the ‘Get Started’ button, then a new entry is created in

the user RDS database with the associated S3 image link.

For the frontend, we chose to use Google’s Material UI library. This is because we wanted the user

to be able to toggle between different options and be able to see which one they selected, and MUI’s Toggle

Button Group component served this functionality for the second page of signup.

Feed

For feed, we had two types of data inputs: 1) posts and 2) notifications. The Posts are denoted by

the light gray background, and the notifications are denoted by the light blue background. There are two

types of posts: user posts and Twitter posts, which are parsed from the Twitter/X feed fetched from Apache

Kafka and added to the posts table under the user ‘TwitterKafka’. The posts are ranked using the adsorption

algorithm in Spark, where each post for every user is assigned a weight that is calculated periodically per

hour. When a user clicks on the comment icon on a post, they will see the post in an expanded form where

they can see the comment threads and add a comment. The user can also choose to reply under each threaded

comment, and to make this functionality very clear we decided to include the reply text box under each

comment (like LinkedIn, as opposed to Instagram which streamlines all commenting in one comment box).

At the top of the feed, users are able to select the photo they want to include and input the caption.

Once they click on ‘create post’, our backend would be able to parse through the caption and associate

hashtags in the post, so that users do not have to manually input their hashtags.

There are three types of notifications: 1) chat invitation acceptance or reject, 2) friend invitation

acceptance or reject, and 3) when a friend is linked with another actor. Each notification has the date as

well as the username and profile photo of the relevant profiles. Since these are notifications, we chose to

place them near the top of the feed, where they are sorted by date.

User Profile

 The profile section manages the 3 types of data that

we initially collected in the signup flow. However, here we chose

to structure the frontend such that it is sorted by 1) user details

and 2) managing interests. This is because the action of updating

a user profile photo impacts the associated actor, hence we put

both action items together. We chose to separate adding interests

and removing interests because for adding interests, we need to

show the suggested interests, while for removing interests we

need to show the user’s current interests. These are two different

API calls, and hence, we chose to display them separately on the

frontend. For each of these action buttons on the user profile

section (‘remove interests’, ‘add interests’, ‘update email’ etc),

we wrote backend calls to update the relevant database.

 Similar to signup, we created a separate page for updating

the associated actor. We included an ‘upload photo’ button in the

main profile page so that when that happens, the backend can

recalculate and choose which recommended actors to show.

Friends

Friends has three features: invitations, your friends, and recommendations. Invitations are where

you can see incoming invitations from other friends, and you can accept or reject them like LinkedIn. Your

Friends is where you can see your current friends, and add or remove friends. Recommendations are where

you can see which friends are recommended to you and send invite requests. These recommendations are

based on the social ranking generated by the adsorption algorithm. This is implemented by creating edges

from hashtags, posts, and users and running PageRank on them to determine which items are the most

influential.

Chat

The chat feature has 3 functionalities:

showing the list of existing chats, sending chat

invitations to friends, and receiving chat invitations from

friends. We decided to have a separate page for each chat

room itself instead of having it navigable within the chat

tab so that it would be easier in the backend to create

individual rooms for each chat. Each time a user sends a chat invite to their friend, the friend receives a

notification on their feed page about the invitation.

For each chatroom, we used socket.io to enable users to chat with each other. Within each chatroom,

a user has the optionality (on the top right bar) to leave the chat or to add new friends. To efficiently

exchange messages across the chats, there are different rooms set up for each of the sockets that represent

a given active channel. Additionally, to make chats persistent, each of the messages is inserted into a table

storing all messages. To improve the user experience, a special username that can send messages in the

socket represents an announcer. The announcer's texts are formatted differently and alert users when

someone has joined a chat or has been invited to it. To ensure that all messages are received in the same

order, when a user sends a chat the message does not get added to their frontend. Instead, there is a listener

attached to the socket that adds the message to the list of messages in the React application.

Search

The search feature currently supports searching for posts. For example, if there is a post where the

caption says “Photos from my last concert” and the user inputs “concert” into the search bar, then they will

be able to retrieve the entire concert post. The user will be able to interact with the post within the search

results, including liking it, going to the comments (navigating to the expanded page of that post), and so

on. The search feature works by using retrieval-augmented generation over an embedding of the captions

from the posts database to provide context and uses GPT-3.5-turbo to find the best matches.

Database Design Decisions

The main tables store fundamental information, and the auxiliary tables help us relate the data on

the main databases. For example, we have the hashtags table as one of our main RDS databases. This

database relies on hashtag_rank, user_hashtags, hashtags_to_posts, and hashtags_to_chat to actually utilize

the various tags in our hashtags table. Throughout development, our team implemented more tables as

needed. During the beginning phases of our project, we only needed the fundamental functionalities such

as logging in and logging out, and adding tables like chat_rooms in later stages.

Moreover, we employed the notion of primary and foreign keys to impose various invariants on

our database schema. The users table underscores this design choice, acting as a reference table to the

majority of other tables. Intuitively, we would want our tables to rely on our users table after all due to the

app being the social media type. We can see these schema invariants in play when adding a new post. For

example, if User1 decides to create a post, the database would relate the post itself to User1’s user_id, which

is a primary key in the users table. Furthermore, we would need to relate hashtags and the social rank to the

post; we can utilize the hashtags_to_posts and posts_rank tables to do so, respectively.
By nature of the profile photos and post content, we needed the AWS S3 buckets to store files that

our RDS tables could not support. As such, we created a public S3 bucket to store our images. Note that

the bucket only allows for public reads not writes for security concerns. Within our bucket, we created two

sub-buckets: posts and profile_pictures. The posts bucket is keyed on the post_id, and the profile_pictures

bucket is keyed on the user_id. Again, these IDs relate to the RDS tables that also store these S3 links in

their respective tables, maintaining our intended invariants.
 Since we implemented the face recognition feature, we needed a vector database in order to retrieve

the actors whom the user looked like. Clearly, ChromaDB provided the infrastructure that matched our

requirements. As for the design decisions, we mirrored the design choices made on the homework, allowing

us to efficiently implement the feature.

Bugs Faced & Lessons Learned

 GitHub merging and concurrent development posed itself as one of our major setbacks during the

project. Initially, each team member merged directly into the main branch from their local machines,

altering or even completely overwriting features that another team member already implemented. The

collision in the registrations.js route file highlighted the importance of good practices when it comes to

updating the GitHub repository. Before standardizing merging procedures, we unintentionally overwrote

working existing endpoints due to suboptimal word assignments for two of our team members. After the

incident, we standardized development and merging procedures such that no team members would

unintentionally overwrite existing code. Each team member will work from unique separate branches and

merge when a major feature is completed. After merging, every team member will pull from the main

branch to update their local code base as needed. Essentially, we learned that a standardized repository

procedure acts as a fundamental pillar to development progress, allowing for clean feature additions.

Extra-Credit Features

- LinkedIn-style friend requests, with accept and reject

- In the Friends tab, users can receive friend request invitations and choose to either accept

or reject them. If accepted, the friends table will be updated, as well as the status in the

friend_requests table.

- Infinite scrolling on the Feed

- We use the React infinite scroll component to support infinite scrolling so that the server

fetches more posts on the user’s demand.

- WebSockets for chat

- We use socket io to implement chat. This makes the speed of chatting very fast and efficient

and also makes sure that there is temporal consistency in the message display for different

chat end users

- Returning valid links to posts for Search

- We directly display posts that the user is looking for (like in Feed) along with GPT’s

response in search results. We also enable users to directly like and view comments by

clicking on the post.

README

1) Names & group number

a) Seth Sukboontip: Sethsuk@seas.upenn.edu

b) Sam Wang: swang27@seas.upenn.edu

c) Zimo Huang: Zimoh@sas.upenn.edu

d) Sonia Tam: Sotam@sas.upenn.edu

e) Group 18, Java Swingers

2) Description of features implemented

a) InstaLite is a social media platform built to emulate Instagram. The platform includes a

host of features such as creating user profiles, associating users with actors based on

matching images, posting and interacting with image content, chatting with friends, and

searching for posts and profiles

3) Extra Credit Claimed

a) LinkedIn-style friend requests, with accept and reject

i) In the Friends tab, users can receive friend request invitations and choose to either

accept or reject them. If accepted, the friends table will be updated, as well as the

status in the friend_requests table

b) Infinite scrolling on the Feed

i) We use the React infinite scroll component to support infinite scrolling so that the

server fetches more posts on the user’s demand.

c) WebSockets for chat

i) We use socket io to implement chat. This makes the speed of chatting very fast

and efficient and also makes sure that there is temporal consistency in the message

display for different chat end users

d) Returning valid links to posts for Search

i) We directly display posts that the user is looking for (like in Feed) along with

GPT’s response in search results. We also enable users to directly like and view

comments by clicking on the post.

4) List of source files included

a) Reference Attached Repository

5) Declaration

a) We declare that all code in this project was written by us and not copied from the internet

or any other source nor group.

6) Instructions for building and running this project

a) Clone the repository

b) Start AWS instance and relevant databases

c) Run “npm install” from the server folder

d) Run “npm install” from the frontend folder

e) Create .env file and input the corresponding information

i) export AWS_ACCESS_KEY_ID=[access key]

ii) export AWS_SECRET_ACCESS_KEY=[secret key]

iii) export AUTH_TOKEN=[auth token]

iv) export RDS_USER=[admin]

v) export RDS_PWD=[rds-password]

vi) export USE_PERSISTENCE=TRUE

f) Run “source .env” in terminal

g) Create a tunnel to the RDS table

h) In a new tab, initialize the ChromaDB with “chroma run --host 0.0.0.0”

i) In a new tab, follow the setup instructions from the nets2120’s “basic-kafka-client”

repository

j) In a new tab, start the frontend server with “npm run dev --host” within the frontend folder

k) In a new tab, start the backend server with “npm start” within the server folder

