

1

Evaluating the Feasibility of Using Bluetooth Low

Energy Signaling and Machine Learning for

Proximity Detection and COVID-19 Contact Tracing

Samuel Wang

swang2023@gmail.com

Abstract — During a global pandemic of COVID-19, contact

tracing is key to curb the disease spread. The use of readily available

Bluetooth Low Energy (BLE) signaling for automated exposure

detection may augment the current labor-intensive and error-ridden

manual contact tracing. To assess its feasibility, systematic studies

were conducted to evaluate the impact of various factors on the

Bluetooth received signal strength. In addition, various data analysis

approaches were evaluated. A traditional method of linear regression-

based analysis can be used to predict distances based on the Received

Signal Strength Indication (RSSI) value of BLE in ideal settings.

However, external factors such as orientation of the device can have

detrimental effect on its accuracy and reliability. On the other hand,

classification approaches based on machine learning is more suited to

tackle this problem because of the binary nature in the contact tracing

protocols. This paper presents the systematic studies of the relationship

between proximity and RSSI in different settings under controlled

environment. The relative orientation of the receiver is found to

substantially impact the received signal strength. Three machine

learning models were trained on the MIT-Matrix iOS Dataset and

further tested using several datasets collected using Raspberry Pi BLE.

Experimental findings indicate that machine learning models

outperform traditional linear regression-based method in accuracy and

reliability. A model of this fashion could prove instrumental to the

success of an automated privacy-preserving contact tracing system.

Keywords —

• Bluetooth Low Energy

• Received Signal Strength Indication

• Machine Learning

• Contact Tracing

• Private Automated Contact Tracing

• Coronavirus

• COVID-19

I. INTRODUCTION

A. Project Description

Private Automated Contact Tracing (PACT) is a
collaborative project led by MIT. PACT’s mission is to enhance
contact tracing in pandemic response by designing exposure
detection functions in personal digital communication devices
that have maximal public health utility while preserving privacy
[1]. A key challenge with the PACT project is the proximity
detection, which is needed to identify two individuals being
closer than 6 feet for too long and thus leads to increased risk of
COVID-19 infection [1].

This project use prototype device built using two Raspberry
Pis to assess various factors that can influence the accuracy of
proximity measurement using the Bluetooth received signal
strength. Data are further analyzed using various models to
develop algorithm for automated detection of closer than 6 feet
proximity. By incorporating additional sensors and machine
learning models, piPACT’s objective of creating an automated
contact tracing algorithm can potentially be satisfied. To
demonstrate the device interoperability and model robustness,
the machine learning models were first trained using the MIT-
Matrix dataset collected using iOS devices with MIT-PACT
testing protocol, and then subsequently tested with the data
collected with the BLE sensors on Raspberry Pis. Additional
information on device orientation was collected using MPU-
9250 chip and added to the Raspberry Pi data set to correct its
influences on received signal strength.

B. Background Information

As of July 26, 2020, there have been a total of 16.1 million
infections and 0.6 million deaths as a result of the COVID-19
pandemic [2]. In US alone, more than 4.2 million people have
been infected by COVID-19 with 146k reported death [2]. At
the time of this paper, neither a cure nor a vaccine have been
developed for this deadly illness [3, 4].

In the absence of a cure or vaccine, contact tracing is

imperative to reducing the amount of cases and fostering a safe

return to normalcy [5]. A successful implementation of

effective contact tracing will enable not only more timely

notification for the people exposed or at-risk, but also prompt

quarantine, and ultimately slow the spread of the infection [6].

 There are various methods of contact tracing. The most basic
form commonly used is manual contact tracing. In this method,
patients who test positive report the people they had in contact
in the past 14 days to a human contact tracer. Manual contact
tracing is not only time-consuming and costly, but also less
reliable because its accuracy relies solely on the patient’s ability
of remembering the identity of their contacts, which is not
always dependable, sometimes can be impossible in case of the
encounter of strangers.

 Automated contact tracing seeks to fix this problem by using
technology to augment the tracing of the exposed [7]. There are
three main types of automated contact tracing: accurate location-
based, centralized proximity-based, and decentralized
proximity-based.

mailto:swang2023@gmail.com

2

 Location based contact tracing has been implemented in
countries such as China, India, and Iran using GPS [8]. The
location of each user is tracked, and proximity of users can be
calculated accurately using their GPS data. However, this form
of contact tracing is not feasible to roll out in the US due to the
myriad of privacy and security concerns associated with real-
time individual location data being tracked.

 Proximity-based contact tracing methods use relative rather
than absolute positioning and are feasible to implement in the
United States [9]. Typically, these types of contact tracing
operate by collecting the Bluetooth chirps Proximity-based
contact tracing methods use relative rather than absolute
positioning and are feasible to implement in the United States.
Typically, these forms of contact tracing operate by collect the
Bluetooth chirps from all nearby devices, storing them, and then
checking if the identifier becomes infected later. Centralized and
decentralized proximity differ in that the former checks on the
exposure in the database in a centralized location, such as
government health agencies, whereas the latter allows individual
to download the infected identifiers from the database and check
his/her exposure with complete privacy. Decentralized tracking
is much more secure and privacy-preserving because it requires
less data to be stored in a central database that could be targeted
by malicious actors. Due to this benefit decentralized tracking is
favored by the US and has been implemented in countries such
as Britain and Canada [7].

The adoption and success of a contact tracing solution are
largely dependent on public and industry approval. Public
approval of a contact tracing app is tied closely to its assurance
of security and privacy. Additionally, for industry approval, the
creators of Android and iOS (Google and Apple, respectively)
have committed to user privacy and decentralized contact
tracing apps [10].

 Another key requirement for successful contact tracing is
that the tracking technology used is energy efficient. This ties
back into the importance of public and industry approval, as
users expect their devices to maintain the same functionality as
before installing the contact tracing app. Therefore, BLE is a
popular option because it is already in many devices and
operates using minimum energy [11].

BLE is a protocol of Bluetooth. It relies on the same
technology but is fundamentally different in that it transfers far
less data than typical Bluetooth streaming. All modern phones
are equipped with this technology, making it a highly effective
sensor for contact tracing apps.

 RSSI can be the metric used to measure the proximity for
contact exposure. RSSI is always negative and ranges from -26
dBm (a few inches) to -100 dBm (40-50 m) [12]. Another piece
of data that can be received from a BLE measurement is the
universally unique identifier (UUID). The UUID is a unique
identifier for a device that changes every 15 minutes and cannot
be feasibly traced back to a certain device, satisfying privacy
preservation requirements.

 While we can treat contact tracing as a linear regression
problem, it is optimal to treat it as a classification problem. This
is because the CDC guidelines are binary [13]: if two people are
within six feet for an extended period of time, they are at-risk;

otherwise they are not. This means the exact distance
measurement is not necessary. Therefore, machine learning,
which is commonly used to solve these types of classification
problems, is a logical approach for algorithm development.
Supervised models were chosen for use in this experiment
because the desired output is deterministic: a contact is either
determined to at-risk or not.

Total three machine learning models were tested. The first
one is Decision Tree classifiers, which are simple classifiers
based on branching logic chains [14]. An example of a decision
tree can be seen in Figure I [15]. The branches of the “tree” are
questions about the data, guiding the model to conclusions about
the class of the input, which are represented by the leaves of the
tree. A consideration for decision trees is their tendency to over
fit to the training set, in which a model creates correlations
between the dataset and the result that do not exist.

Figure I. Diagram of a Decision Tree

 To help solve the problem of overfitting, random forests
were used as a second model. Random forests rely on an
ensemble of decision trees to create predictions [16]. The output
of the classifier is formed by the mode of the output of the trees.
Each of these decision trees look at a subset of the features,
rather than all of them. Random forests’ usage of the collective
conclusion of multiple decision trees reduces the overfitting that
commonly affects decision tree classifiers. Random forests can
be robust, an essential characteristic of models that have solved
the problem of overfitting.

Naïve Bayes classifiers were used as a third model in this
experiment. Naïve Bayes classifiers differs from Decision Trees
and Random Forests because they are non-parametric, meaning
they do not create rules [17]. This means that they do not assume
anything about the structure of the data. Naïve Bayes is a
probabilistic classifier which applies Bayes’ theorem. A key
condition of Naïve Bayes is the features are conditionally
independent or Naïve, which allows it to be closed form. Due to
the training being closed form, Naïve Bayes models can be
trained in linear time, making them much less time-expensive
than their peers.

Scikit is one of the primary modules in this experiment and
was used heavily for the modeling portion. Scikit-learn is a
powerful Python module for machine learning which contains
regression, classification, model selection, and many other
functions. The module had some portions written in Cython (an
extension to Python that uses the C programming language)
because it improves performance.

3

It should be noted that these current experiments do not
address the influences from in indoor vs outdoor locations,
humidity, temperature, surroundings, or other forms of
interference. Such factors were kept as constant as possible
throughout the experiment.

II. HYPOTHESES

Hypothesis 1: BLE RSSI measurement can be used for
distance determination in ideal situations.

Hypothesis 2: Other factors, such as orientation of the
advertiser and scanner will impact the accuracy of BLE
Measurement.

Hypothesis 3: Traditional linear regression between the
distance and RSSI Trendline can only work in ideal scenarios,
but are not fit for more complex real-life situations.

Hypothesis 4: Adding additional sensors to assist the BLE
improves the accuracy

Hypothesis 5: Machine Learning Classifiers will improve
predictive accuracy compared to traditional regressive models.

III. EXPERIMENTS AND DATA COLLECTIONS

The experiments for each hypothesis are summarized in

Table I.

TABLE I. EXPERIMENT OVERVIEW

Exp

Hypothesis Objectives Rep

1 None.
Establish the percentage

variance of RSSI strength
2

2
BLE can be used for distance

measurement in ideal settings

Assess whether BLE is

viable for contact tracing
2

3
Other factors will impact the

accuracy of BLE strength

Test the impact of vertical

rotation
4

4
Other factors will impact the

accuracy of BLE strength

Assess the impact of

horizontal rotation
4

5
Other factors will impact the

accuracy of BLE strength

Test the effect of

occlusion by clothing
1

Note: Rep stands for the number of repetitions for each experiment

A. Plan and Execution

Two Raspberry Pis were used in the experiments: one was
stationary serving as an advertiser which broadcasted a BLE
signal while the other was designated as a scanner collecting
packets and recording them as csv files.

• To ensure controllability/reproducibility of the data, the
scanner Raspberry Pi which has a MPU-9250 chip (A
9-axis Accelerometer-Gyroscope-Magnetometer
inertial measurement sensor) was secured with a small
vise that allows it to be set at different angles both
horizontally and vertically (Figure II).

Figure II. Scanner with MPU-9250 on a vise

• The experiments were carried out in multiple days
where temperature and humidity variation were
minimum and therefore not taken into consideration.

• The reference code provided by MIT PiPact was
modified to enable calibration and data collection from
the MPU-9250 chip that was added to the Scanner Pi.
The code was also configured to support the
packetization of data and feed buckets into models
Otherwise, the code remained unchanged.

• The experiments were carried out in a large room with
all the furniture removed. The advertising Raspberry Pi
is fixed on a small chair while the scanner Pi on an
identical chair can be place at various distances from the
broadcaster while the Bluetooth chips of both Pis are
aligned in a straight line (tape measure on the floor) as
shown in Figure III.

Figure III. Experimental setup

 The experiment was designed to be as uniform as possible
between different measurements. Two identical chairs of equal
heights were used to elevate the two Raspberry Pis and a
measuring tape was used to mark off different distance intervals
for the scanner to be moved.

A-1. Distance vs RSSI

In Experiment 1, the variability of RSSI measurement was

established by taken a series RSSI value with the exact same

condition at distance of 3 feet.

In Experiment 2, a baseline was created by collecting

measurements of the RSSI vs Distance in an ideal indoors

scenario: everything was kept the same as much as possible; the

two Raspberry Pi devices were elevated to the same height

4

while the distance between the two Raspberry Pis was varied

between six intervals: 1, 3, 6, 8, 10, and 12 feet. They were also

placed flat with ports facing each other to ensure proper

alignment of the BLE chips. This minimizes any effects of

orientation effects in this experiment, which was in the

hypothesized to have an impact on the RSSI of the devices

(Hypothesis 2). The position of the scanner was varied between

intervals, whereas the advertiser remained stationary. At each

distance, the scanner collected the BLE data from the advertiser

for 4 minutes, resulting in approximately 250 measurements.

These points were sorted into around 50 “buckets” each consist

of the average of accumulated data during 5-second intervals.

The term “bucket” will be explained with more depth in the

Analysis and Algorithms Subsection.

A-2. Effects of Oritations on RSSI

In Experiment 3, the impact of vertical rotation of the

scanner on the RSSI measurements was evaluated. Through

these series of experiments, the distance between the Scanner

and Advertiser was set constant at 3 feet and 6 feet. A vise was

used to secure the Scanner while it was carefully rotated

through the four different angles of 0, 90, 180, and 270 degrees

on the vertical axis, with the vector horizontally pointing the

Advertiser defined as 0 degree.

In Experiment 4, the impact of horizontal rotation of the

scanner on the RSSI was evaluated in similar fashion as

Experiment 3, only the Scanner was rotated through the four

different angles of 0, 90, 180, and 270 degrees on the horizontal

axis, with the vector horizontally pointing the Advertiser

defined as 0 degree.

A-3. Effects of Occlusion on RSSI

In Experiment 5, the impact of occlusion on RSSI

measurement was assessed by covering the Scanner with

different materials, including none, jeans, cotton shirt, winter

jacket, fleece, sweater and windbreaker (a very light jacket).

The distance and orientation of the two Raspberry Pis were kept

constant.

B. Data Relevance

Experiment 1 established the variability of measurement of
RSSI in current setting.

Experiment 2 was conducted to test Hypothesis 1, which
states “BLE RSSI measurement can be used for distance
determination in ideal situations”.

Experiment 3, 4 and 5 were carried out to test Hypothesis 2,
which states “Other factors, such as orientation of the advertiser

and scanner will impact the accuracy of BLE Measurement”.
The combined datasets will be used in the second round of
traditional linear regression between distance and the measured
RSSI value to test Hypothesis 3, which states “Traditional linear
regression between the distance and RSSI Trendline can only
work in ideal scenarios, but not fit for more complex real-life
situation.”. And the results also will provide evidence that will
test Hypothesis 4, which states “Adding additional sensors to
assist the BLE improves the accuracy”.

C. Examples

The variability of RSSI measurement was determined by
data from Experiment 1. As shown in Figure IV, the RSSI can
have a percent difference around roughly 3.2%, even in exact
conditions. This established the baseline intrinsic variability for
all other RSSI measurements. As such the threshold for a
variable satisfying Hypothesis 2 was set as having a percent
difference higher than 5%.

Figure IVIV. Percentage Difference of RSSI under Identical

Conditions

Hypothesis 1 was confirmed by data from Experiment 2 as

shown in Figure V. A traditional linear regression of the

measured RSSI vs the distance between the two Raspberry Pis

yielded a correlation with R2 = 0.81 in the ideal and controlled

indoor scenario. There is a steady inverse relationship between

distance and RSSI measurement. Additionally, as the distance

between the two devices increased, so did the amount of

deviation.

Figure V. RSSI VS Distance in Ideal Indoor Situation

0

10

20

30

1 2 3 4 5 6

P
er

ce
n

t
D

if
fe

re
n

ce
 f

ro
m

co

n
tr

o
l

Experiment Number

y = -2.3107x - 42.651
R² = 0.8142

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00
0.00 2.50 5.00 7.50 10.00 12.50 15.00

R
SS

I (
d

B
m

)

Distance (ft)

5

Due to the effects of rotation, as presented by Experiment 3
and 4, Hypothesis 2 was also confirmed.

In Experiment 3, the relationship between vertical rotation

and RSSI values at distance of both 3 feet and 6 feet were each

measured twice. Even though the devices remained at a

constant distance, the change in vertical rotation affected the

RSSI value, as shown by the bars chat of percentage RSSI

difference vs vertical angles in Figure VI. There was a

maximum range of 12.7 dBm between the four different angles

and a maximum percentage RSSI difference of 15.5%,

statistically significant over the 5%, normal variability of RSSI

established in Experiment 1.

Figure VI. Percentage RSSI Difference vs Vertical Angles

Similarly, Experiment 4 provided the relationship between

horizontal rotation and RSSI at both 3 feet and 6 feet distances.

Again, even though the distance between the two devices

remained constant, the changes of horizontal orientation

affected the RSSI measurement. In Figure VII, The RSSI value

had a range of 20 dBm through the experiment and a maximum

percent difference of 24.9%. The point at 90 degrees and 3 feet

was believed to be an outlier, but this was retested six times,

resulting in a maximum percent difference of 4.14% and a

range of 5.9 dBm.

Through Experiments 3 and 4 on angles, it was found that

there is a larger variance at 3 feet than 6 feet. In experiment 3,

vertical rotation, the Average percent difference was 5.6% at 3

feet, whereas it was 1.9% at 6 feet. In experiment 4, vertical

rotation, the Average percent difference was 9.8% at 3 feet,

whereas it was 3.1% at 6 feet. Given the threshold for

significant percent difference established through experiment 1

is 5%, rotation at 3 feet on average was a significant factor,

whereas for 6 feet it was not found to be one.

Figure VII. Percentage RSSI Difference vs Horizontal Angles

Experiment 5 shows that there is some effect of different
clothing on the RSSI measurement. However, due to the
difficulty in determining the clothing of the user, this effect was
deemed negligible and was ignored by the rest of the
experiment.

Figure VIII. Percentage RSSI Difference vs Different Occlusion

.

IV. ANALYSIS AND ALGORITHMS

A. Description

The MIT-Matrix Dataset is a dataset collected by PACT

members. The MIT Testing protocol was used to collect it. Data

from the Range, Angle, Activity, Bluetooth, Heading,

Gyroscope, Attitude, Gravity, Magnetic-field, Pedometer, and

Altitude sensors were all recorded as features in the collection.

Data was collected at 10 distance intervals: 3, 4, 5, 6, 8, 10, 12,

15 feet.
The MIT-Matrix Dataset organizes its data in log files. Each

entry that is recorded is of a specific sensor at a given timestamp.
To efficiently feed the data into machine learning models, pre-
processing of the log files was done by converting the log files
into separate “buckets”. A bucket contains all the sensor
readings that occurred during a certain time interval and each
sensor data point is averaged. This means that once every bucket
is processed, the size is the uniform, regardless if there were
more readings in a specific bucket. This also helped remove the
dimension of time, as the model can approach each bucket
independently and make a prediction as to whether the devices

0

5

10

15

20

25

30

35

0 90 180 270

P
er

ce
n

t
D

if
fe

re
n

ce
 f

ro
m

 M
ea

n

Angle (Degrees)

3 feet Trial 1 3 feet Trial 2 6 feet Trial 1

6 feet Trial 2 Threshold

0

5

10

15

20

25

30

35

0 90 180 270P
er

ce
n

t
D

if
fe

re
n

ce
 f

ro
m

 M
ea

n

Angle (Degrees)
3 feet Trial 1 3 feet Trial 2 6 feet Trial 1

6 feet Trial 2 Threshold

0

5

10

15

20

25

30

35

P
er

ce
n

t
D

if
fe

re
n

ce
 f

ro
m

 m
ea

n

Clothing Type

6

were within six feet during the time interval covered by the
bucket.

In the MIT-Matrix Dataset, each sensor reading was
collected at different intervals and some sensors were not used
in certain experiments. In the parser we wrote, any sensors that
were not used throughout all the experiments in this dataset were
removed because of the inconsistency it would cause between
different buckets in the final processed dataset. For sensors
missing in a bucket, but not an experiment, previous values from
the same sensor were filled in instead by the parser. This is an
inherently flawed assumption. However, due to the lack of data
to begin with, the parser was designed to maximize the amount
of the processed data the models could be trained on.

The parser algorithm was written with Python, and
periodically employed the use of various Python Modules. To
best explain this algorithm, we will split it into two sections:
Bucket Collection and Bucket Processing.

During the bucket collection period, data from the log files
were read in and placed into a 3-level dictionary. This dictionary
had three levels of keys: first the distance between the devices,
then the bucket id, and the sensor name last. The log files were
iterated through with the Python module OS. To find the bucket
id, the difference between the starting time of the experiment
(defined as the timestamp of the first entry) and the current
entry’s timestamp was floor divided by the set size of the
buckets.

In the bucket processing section, the data in the multilevel
dictionary created in the first section was compacted into one
row of a CSV file. To do this, the dictionary was iterated
through and each bucket was processed with a helper function.
In this function, the sensors of each bucket had all their values
processed. If the sensor was missing in each given bucket, then
a helper function backfilled with the last found value for the
sensor. The resulting processed data was then dumped into a
CSV file.

The models from the Sklearn modules were then trained on
the processed data set. These models were Linear Regression,
Decision Tree Classifier, Random Forest Classifier, and Naïve
Bayes Classifier.

 Each of these models was trained on the processed data from
the MIT-Matrix Dataset, which had 1161 data points. The
training was repeated 5 times for each model architecture with
randomized subsets of the data and the resultant models were
pickled using the joblib module so that they could be loaded
later.

To select the best model, cross-validation experiments were
executed, using the distance data collected on the in Experiment
1. The training and testing data were intentionally collected on
different device types to test the robustness of the models. In
addition, the metrics of Area Under the ROC Curve (AUC or
AUROC), recall, and precision were recorded.

Area Under Curve is calculated by taking the definite
integral under the Receiver Operating Characteristic Curve
(ROC Curve). The ROC Curve plots the True Positive Rate
against the False Positive Rate at different classification
thresholds. The lower the classification threshold, the more

items marked positive, increasing the number of True and False
positives. An example ROC from this experiment can be found
in 0. The higher the AUC, the better the model performs. AUC
was maximized in this experiment.

Recall is the ratio of correctly predicted positive examples
and actual positives. A model that only produces false negatives
has a recall of zero, whereas a model that produces no false
negatives has a recall of one. Recall is valued more when False
Negatives are worse than False Positives in a problem.

Precision is the ratio of correctly predicted positive examples
and the total number of points predicted to be positive. A model
that produces only false positives has a precision of zero,
whereas a model producing no false positives has a precision of
one. Precision is valued more when False Positives are worse
than False Negatives.

Recall is typically inverse to Precision. In this problem, the
cost of a false positive is stress on a person for two weeks, who
believes that they falsely were exposed. The cost of a False
Negative is keeping someone who was exposed on the street and
as a potential carrier. Thus, we believe the cost of a False
Negatives is greater than that of a False Positive in this problem.
Therefore, although both metrics were considered, we valued
recall over precision in this experiment.

To test Hypothesis 3 a linear regression model was trained
on the MIT-Matrix Dataset and was compared to the classifiers
in this experiment. To test Hypothesis 4, a linear regression
model was trained only on Bluetooth Measurements in the MIT-
Matrix Dataset and compared to the AUC from the other models.

B. Results and Examples

The data collected in Experiment 2 was in the format of a N

x 2 matrix. It was analyzed by a traditional linear regression

model to evaluated whether or a linear relationship existed

between RSSI and distance in an ideal situation. Evidence of a

linear relationship would imply that Hypothesis 1, i.e.

Bluetooth can be used for distance determination would be true.

An R2 indicates the fit of the model to the data. Given an R2 of

0.81, with a maximum of 1, we can reasonably conclude that

there is a linear relationship between distance and RSSI,

confirming Hypothesis 1.
After combining all the data collected using Raspberry Pis

including the ones from Experiment 3-5 where orientation and
occlusion changes were included, another traditional linear
regression analysis was performed on the whole Raspberry
dataset. As shown in Figure IX. Traditional Linear Regression
on Combined Raspberry Pi RSSI Data vs Distance, now the
correlation only has R2 < 0.2. This along with the result from
Experiment 2, provided direct evidence to support Hypothesis 3,
which states “Traditional linear regression between the distance
and RSSI Trendline can only work in ideal scenarios, but are not
fit for more complex real-life situations”.

7

Figure IX. Traditional Linear Regression on Combined Raspberry Pi

RSSI Data vs Distance

The data collected from the Pi in Experiments 1 - 5 was used
to test all the models. Tables II-IV through show the results from
these tests. To compare the models, the AUC and recall were
used as primary metrics. Given this, the best model was the was
Decision Tree 2, which had an AUC of 0.7, a recall of 0.46, and
a precision of 0.89.

This data also confirmed Hypothesis 5 “Machine Learning
Classifiers will improve predictive accuracy compared to
traditional regressive models”. The classifiers all vastly
outperformed the regressor, which had an R2 value of less than
0.2. On the other hand, all the Machine learning classifiers had
an AUC greater than 0.49.

FIGURE X. AN EXAMPLE ROC CURVE

TABLE II. DECISION TREE CLASSIFIER

Model Number AUC Recall Precision

Decision Tree 1 0.54 0.53 0.54

Decision Tree 2 0.70 0.46 0.89

Decision Tree 3 0.50 1.00 0.50

Decision Tree 4 0.58 0.26 0.73

Decision Tree 5 0.55 0.56 0.55

TABLE III. RANDOM FOREST CLASSIFIER

Model Number AUC Recall Precision

Random Forest 6 0.69 0.38 1.00

Random Forest 7 0.60 0.37 0.69

Random Forest 8 0.62 0.25 1.00

Random Forest 9 0.69 0.38 1.00

Random Forest 10 0.60 0.19 1.00

TABLE IV. NAÏVE BAYES

V. CONCLUSIONS

A. Hypothesis Evaluation

 Hypothesis 1, “BLE can be used for distance determination
in ideal situations” was confirmed through Experiment 2. By
proving this hypothesis, we reaffirmed the feasibility of BLE as
an appropriate signal for contact tracing. Without this
foundation to build on, there would be no reason to evaluate the
remaining hypotheses. As shown in Section III-C, there is a clear
negative linear relationship (Figure V) between RSSI and
distance in between the two devices.

 Hypothesis 2, “Other factors, such as orientation of the
advertiser and scanner will impact the accuracy of BLE
Measurement” was confirmed by results from Experiments 3-5.
Specifically, our experimentation showed that horizontal and
vertical orientation have a significant impact on RSSI. As shown
in Section III-C, vertical and horizontal orientation of the
scanner device have a significant impact on the RSSI signals.
The impact of orientation is very relevant and significant to real-
life contact tracing because people naturally will have their
phones in various orientations. This justify the notion that we
need extra sensor to gauge the phone orientation, which is
exactly Hypothesis 4 calls for.

 Hypothesis 3, “Traditional linear regression between the
distance and RSSI Trendline can only work in ideal scenarios,
but not fit for more complex real-life situation” was confirmed
by both Hypothesis 2 and the combined Raspberry Pi data as
described in Section IV-B.

 Hypothesis 4, “Adding additional sensors to assist the
Bluetooth sensor improves the accuracy” was also confirmed.
As shown in Section IV, machine learning models that
incorporate accelerometer and gyroscope readings in addition to
RSSI signals have performed better, as evidenced by the greater
AUC values.

y = -1.6306x - 46.434
R² = 0.1924

-100

-80

-60

-40

-20

0

0 5 10 15

R
SS

I V
al

u
e

Distance in feet

Traditional Linear Regression of All
Raspberry Pi Data (RSSI vs Distance)

Model Number AUC Recall Precision

Naïve Bayes 11
0.50 0.00 0.00

Naïve Bayes 12
0.49 0.54 0.49

Naïve Bayes 13
0.50 0.45 0.50

Naïve Bayes 14
0.52 0.10 0.61

Naïve Bayes 15
0.51 0.01 1.00

8

 Hypothesis 5, “Creating Machine Learning Classifier will
improve predictive accuracy compared to traditional regressive
models” was also improved. As shown in Section IV, a total of
15 machine learning classification models of three major types
were trained and validated using MIT-Matrix data. This led to
a model whose AUC is 0.70 on the Raspberry pi data. The AUC
of all three classification models were higher than that of the
linear regression model, indicating superior performance of the
classification method.

B. Noteworthy Conclusions

A noteworthy conclusion of these experiments is that device
orientation has a significant impact on the measured RSSI
signal. Accelerometer and gyroscope on a MPU-9250 chip were
successfully used on Raspberry Pi scanner to provide relative
device orientation data when combined with machine learning
models can improve the accuracy.

Another noteworthy conclusion is that machine leaning
classifier is more effective than traditional linear regression
method in estimating proximity.

C. General Lessons Learned

A general lesson learned is that external factors other than
the distance affect RSSI measurement. These factors must be
addressed so that BLE-based contact tracing correctly classify
whether certain received BLE chirps belong to “too close” or
not. Once that is correctly determined, the “too long” part of the
contact tracing should be relatively easier to calculated. This is
an important lesson for Bluetooth based contact tracing as it
means that is imperative to incorporate other sensors to improve
the accuracy.

VI. NEXT STEPS

I plan to take a few next steps to further improve the model
accuracy. First, I would like to further compare the machine
learning models used in these experiments and incorporate
additional models. For example, I would like to divide the data
set into training, validation, and testing triplet sets, so that I can
objectively compare these models.

After optimizing the machine learning model, I plan to port
the model to the Raspberry Pi so it can generate “too close”
classification real time which allows further calculation to
address “too long” part of the contact tracing. This will also
allow updating model real time on the device. My current efforts
to move the model to the Raspberry Pi were unsuccessful due to
the different 32-bit architecture used on the Pi, which I hope to
solve soon.

Finally, I would like to collect additional data to improve my
model, so that it can incorporate the impact from other factors,
such as humidity, temperature, surroundings, the presence of
conductors, and more.

REFERENCES

[1] PACT: Private Automated Contact Tracing.

Available: https://pact.mit.edu/

[2] Johns Hopkins Coronavirus Resource Center.

Available: https://coronavirus.jhu.edu/us-map

[3] A. Abrams-Downey, J. Saabiye, and M. Vidaurrazaga,

"Investigational Therapies for the Treatment of

COVID-19: Updates from Ongoing Clinical Trials,"

(in eng), Eur Urol Focus, Jun 2020.

[4] P. Vijayvargiya, Z. Esquer Garrigos, N. E. Castillo

Almeida, P. R. Gurram, R. W. Stevens, and R. R.

Razonable, "Treatment Considerations for COVID-

19: A Critical Review of the Evidence (or Lack

Thereof)," (in eng), Mayo Clin Proc, vol. 95, no. 7, pp.

1454-1466, 07 2020.

[5] B. J. Ryan, D. Coppola, J. Williams, and R. Swienton,

"COVID-19 Contact tracing solutions for mass

gatherings," (in eng), Disaster Med Public Health

Prep, pp. 1-16, Jul 2020.

[6] C. R. MacIntyre, "Case isolation, contact tracing, and

physical distancing are pillars of COVID-19 pandemic

control, not optional choices," (in eng), Lancet Infect

Dis, Jun 2020.

[7] L. Ferretti et al., "Quantifying SARS-CoV-2

transmission suggests epidemic control with digital

contact tracing," (in eng), Science, vol. 368, no. 6491,

05 2020.

[8] S. Wang, S. Ding, and L. Xiong, "A New System for

Surveillance and Digital Contact Tracing for COVID-

19: Spatiotemporal Reporting Over Network and

GPS," (in eng), JMIR Mhealth Uhealth, vol. 8, no. 6,

p. e19457, 06 2020.

[9] M. J. Parker, C. Fraser, L. Abeler-Dörner, and D.

Bonsall, "Ethics of instantaneous contact tracing using

mobile phone apps in the control of the COVID-19

pandemic," (in eng), J Med Ethics, vol. 46, no. 7, pp.

427-431, 07 2020.

[10] "Apple Newsroom."

[11] J. Abeler, M. Bäcker, U. Buermeyer, and H. Zillessen,

"COVID-19 Contact Tracing and Data Protection Can

Go Together," (in eng), JMIR Mhealth Uhealth, vol.

8, no. 4, p. e19359, 04 2020.

[12] IOT and Electronics. Available:

https://iotandelectronics.wordpress.com/2016/10/07/h

ow-to-calculate-distance-from-the-rssi-value-of-the-

ble-

beacon/#:~:text=The%20signal%20strength%20depe

nds%20on,40%2D50%20m%20distance).

[13] CDC Guideline on Contact Tracing for COVID-19.

Available: https://www.cdc.gov/coronavirus/2019-

ncov/php/contact-tracing/contact-tracing-

plan/contact-tracing.html

[14] J. Quinlan, "Induction of Decision Trees. Mach.

Learn," 1986.

[15] Meet Nandu in Good Audience. Available:

https://blog.goodaudience.com/machine-learning-

https://pact.mit.edu/
https://coronavirus.jhu.edu/us-map
https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/#:~:text=The%20signal%20strength%20depends%20on,40%2D50%20m%20distance
https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/#:~:text=The%20signal%20strength%20depends%20on,40%2D50%20m%20distance
https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/#:~:text=The%20signal%20strength%20depends%20on,40%2D50%20m%20distance
https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/#:~:text=The%20signal%20strength%20depends%20on,40%2D50%20m%20distance
https://iotandelectronics.wordpress.com/2016/10/07/how-to-calculate-distance-from-the-rssi-value-of-the-ble-beacon/#:~:text=The%20signal%20strength%20depends%20on,40%2D50%20m%20distance
https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/contact-tracing.html
https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/contact-tracing.html
https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/contact-tracing.html
https://blog.goodaudience.com/machine-learning-using-decision-trees-and-random-forests-in-python-with-code-e50f6e14e19f

9

using-decision-trees-and-random-forests-in-python-

with-code-e50f6e14e19f

[16] A. Liaw and M. Wiener, "Classification and

regression by randomForest," R news, vol. 2, no. 3, pp.

18-22, 2002.

[17] T. J. Watson, "An empirical study of the naive Bayes

classifier," 2001.

https://blog.goodaudience.com/machine-learning-using-decision-trees-and-random-forests-in-python-with-code-e50f6e14e19f
https://blog.goodaudience.com/machine-learning-using-decision-trees-and-random-forests-in-python-with-code-e50f6e14e19f

