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Abstract — During a global pandemic of COVID-19, contact 

tracing is key to curb the disease spread. The use of readily available 

Bluetooth Low Energy (BLE) signaling for automated exposure 

detection may augment the current labor-intensive and error-ridden 

manual contact tracing. To assess its feasibility, systematic studies 

were conducted to evaluate the impact of various factors on the 

Bluetooth received signal strength. In addition, various data analysis 

approaches were evaluated. A traditional method of linear regression-

based analysis can be used to predict distances based on the Received 

Signal Strength Indication (RSSI) value of BLE in ideal settings. 

However, external factors such as orientation of the device can have 

detrimental effect on its accuracy and reliability. On the other hand, 

classification approaches based on machine learning is more suited to 

tackle this problem because of the binary nature in the contact tracing 

protocols. This paper presents the systematic studies of the relationship 

between proximity and RSSI in different settings under controlled 

environment. The relative orientation of the receiver is found to 

substantially impact the received signal strength. Three machine 

learning models were trained on the MIT-Matrix iOS Dataset and 

further tested using several datasets collected using Raspberry Pi BLE. 

Experimental findings indicate that machine learning models 

outperform traditional linear regression-based method in accuracy and 

reliability. A model of this fashion could prove instrumental to the 

success of an automated privacy-preserving contact tracing system. 
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I. INTRODUCTION 

A. Project Description  

Private Automated Contact Tracing (PACT) is a 
collaborative project led by MIT. PACT’s mission is to enhance 
contact tracing in pandemic response by designing exposure 
detection functions in personal digital communication devices 
that have maximal public health utility while preserving privacy 
[1]. A key challenge with the PACT project is the proximity 
detection, which is needed to identify two individuals being 
closer than 6 feet for too long and thus leads to increased risk of 
COVID-19 infection [1]. 

This project use prototype device built using two Raspberry 
Pis to assess various factors that can influence the accuracy of 
proximity measurement using the Bluetooth received signal 
strength. Data are further analyzed using various models to 
develop algorithm for automated detection of closer than 6 feet 
proximity. By incorporating additional sensors and machine 
learning models, piPACT’s objective of creating an automated 
contact tracing algorithm can potentially be satisfied. To 
demonstrate the device interoperability and model robustness, 
the machine learning models were first trained using the MIT-
Matrix dataset collected using iOS devices with MIT-PACT 
testing protocol, and then subsequently tested with the data 
collected with the BLE sensors on Raspberry Pis. Additional 
information on device orientation was collected using MPU-
9250 chip and added to the Raspberry Pi data set to correct its 
influences on received signal strength.  

B. Background Information 

As of July 26, 2020, there have been a total of 16.1 million 
infections and 0.6 million deaths as a result of the COVID-19 
pandemic [2]. In US alone, more than 4.2 million people have 
been infected by COVID-19 with 146k reported death [2]. At 
the time of this paper, neither a cure nor a vaccine have been 
developed for this deadly illness [3, 4].  

In the absence of a cure or vaccine, contact tracing is 

imperative to reducing the amount of cases and fostering a safe 

return to normalcy [5]. A successful implementation of 

effective contact tracing will enable not only more timely 

notification for the people exposed or at-risk, but also prompt 

quarantine, and ultimately slow the spread of the infection [6]. 

 
 There are various methods of contact tracing. The most basic 
form commonly used is manual contact tracing. In this method, 
patients who test positive report the people they had in contact 
in the past 14 days to a human contact tracer. Manual contact 
tracing is not only time-consuming and costly, but also less 
reliable because its accuracy relies solely on the patient’s ability 
of remembering the identity of their contacts, which is not 
always dependable, sometimes can be impossible in case of the 
encounter of strangers.    

 Automated contact tracing seeks to fix this problem by using 
technology to augment the tracing of the exposed [7]. There are 
three main types of automated contact tracing: accurate location-
based, centralized proximity-based, and decentralized 
proximity-based.  

mailto:swang2023@gmail.com


   

 

2 

 

 Location based contact tracing has been implemented in 
countries such as China, India, and Iran using GPS [8]. The 
location of each user is tracked, and proximity of users can be 
calculated accurately using their GPS data. However, this form 
of contact tracing is not feasible to roll out in the US due to the 
myriad of privacy and security concerns associated with real-
time individual location data being tracked.  

 Proximity-based contact tracing methods use relative rather 
than absolute positioning and are feasible to implement in the 
United States [9]. Typically, these types of contact tracing 
operate by collecting the Bluetooth chirps Proximity-based 
contact tracing methods use relative rather than absolute 
positioning and are feasible to implement in the United States. 
Typically, these forms of contact tracing operate by collect the 
Bluetooth chirps from all nearby devices, storing them, and then 
checking if the identifier becomes infected later. Centralized and 
decentralized proximity differ in that the former checks on the 
exposure in the database in a centralized location, such as 
government health agencies, whereas the latter allows individual 
to download the infected identifiers from the database and check 
his/her exposure with complete privacy. Decentralized tracking 
is much more secure and privacy-preserving because it requires 
less data to be stored in a central database that could be targeted 
by malicious actors. Due to this benefit decentralized tracking is 
favored by the US and has been implemented in countries such 
as Britain and Canada [7]. 

The adoption and success of a contact tracing solution are 
largely dependent on public and industry approval. Public 
approval of a contact tracing app is tied closely to its assurance 
of security and privacy. Additionally, for industry approval, the 
creators of Android and iOS (Google and Apple, respectively) 
have committed to user privacy and decentralized contact 
tracing apps [10]. 

 Another key requirement for successful contact tracing is 
that the tracking technology used is energy efficient. This ties 
back into the importance of public and industry approval, as 
users expect their devices to maintain the same functionality as 
before installing the contact tracing app. Therefore, BLE is a 
popular option because it is already in many devices and 
operates using minimum energy [11].   

BLE is a protocol of Bluetooth. It relies on the same 
technology but is fundamentally different in that it transfers far 
less data than typical Bluetooth streaming.  All modern phones 
are equipped with this technology, making it a highly effective 
sensor for contact tracing apps.  

 RSSI can be the metric used to measure the proximity for 
contact exposure. RSSI is always negative and ranges from -26 
dBm (a few inches) to -100 dBm (40-50 m) [12]. Another piece 
of data that can be received from a BLE measurement is the 
universally unique identifier (UUID). The UUID is a unique 
identifier for a device that changes every 15 minutes and cannot 
be feasibly traced back to a certain device, satisfying privacy 
preservation requirements.  

 While we can treat contact tracing as a linear regression 
problem, it is optimal to treat it as a classification problem. This 
is because the CDC guidelines are binary [13]: if two people are 
within six feet for an extended period of time, they are at-risk; 

otherwise they are not. This means the exact distance 
measurement is not necessary. Therefore, machine learning, 
which is commonly used to solve these types of classification 
problems, is a logical approach for algorithm development. 
Supervised models were chosen for use in this experiment 
because the desired output is deterministic: a contact is either 
determined to at-risk or not. 

Total three machine learning models were tested. The first 
one is Decision Tree classifiers, which are simple classifiers 
based on branching logic chains [14]. An example of a decision 
tree can be seen in Figure I [15]. The branches of the “tree” are 
questions about the data, guiding the model to conclusions about 
the class of the input, which are represented by the leaves of the 
tree. A consideration for decision trees is their tendency to over 
fit to the training set, in which a model creates correlations 
between the dataset and the result that do not exist.  

Figure I. Diagram of a Decision Tree

 

 To help solve the problem of overfitting, random forests 
were used as a second model. Random forests rely on an 
ensemble of decision trees to create predictions [16]. The output 
of the classifier is formed by the mode of the output of the trees. 
Each of these decision trees look at a subset of the features, 
rather than all of them. Random forests’ usage of the collective 
conclusion of multiple decision trees reduces the overfitting that 
commonly affects decision tree classifiers. Random forests can 
be robust, an essential characteristic of models that have solved 
the problem of overfitting. 

Naïve Bayes classifiers were used as a third model in this 
experiment. Naïve Bayes classifiers differs from Decision Trees 
and Random Forests because they are non-parametric, meaning 
they do not create rules [17]. This means that they do not assume 
anything about the structure of the data. Naïve Bayes is a 
probabilistic classifier which applies Bayes’ theorem. A key 
condition of Naïve Bayes is the features are conditionally 
independent or Naïve, which allows it to be closed form. Due to 
the training being closed form, Naïve Bayes models can be 
trained in linear time, making them much less time-expensive 
than their peers.  

Scikit is one of the primary modules in this experiment and 
was used heavily for the modeling portion. Scikit-learn is a 
powerful Python module for machine learning which contains 
regression, classification, model selection, and many other 
functions. The module had some portions written in Cython (an 
extension to Python that uses the C programming language) 
because it improves performance.  
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It should be noted that these current experiments do not 
address the influences from in indoor vs outdoor locations, 
humidity, temperature, surroundings, or other forms of 
interference. Such factors were kept as constant as possible 
throughout the experiment. 

II. HYPOTHESES 

Hypothesis 1: BLE RSSI measurement can be used for 
distance determination in ideal situations.  

Hypothesis 2: Other factors, such as orientation of the 
advertiser and scanner will impact the accuracy of BLE 
Measurement. 

Hypothesis 3: Traditional linear regression between the 
distance and RSSI Trendline can only work in ideal scenarios, 
but are not fit for more complex real-life situations. 

Hypothesis 4: Adding additional sensors to assist the BLE    
improves the accuracy 

Hypothesis 5: Machine Learning Classifiers will improve 
predictive accuracy compared to traditional regressive models. 

III. EXPERIMENTS AND DATA COLLECTIONS 

The experiments for each hypothesis are summarized in 

Table I.  

TABLE I.  EXPERIMENT OVERVIEW  

Exp 

# 
Hypothesis Objectives Rep 

1 None. 
Establish the percentage 

variance of RSSI strength 
2 

2 
BLE can be used for distance 

measurement in ideal settings 

Assess whether BLE is 

viable for contact tracing 
2 

3 
Other factors will impact the 

accuracy of BLE strength 

Test the impact of vertical 

rotation 
4 

4 
Other factors will impact the 

accuracy of BLE strength 

Assess the impact of 

horizontal rotation 
4 

5 
Other factors will impact the 

accuracy of BLE strength 

Test the effect of 

occlusion by clothing  
1 

Note: Rep stands for the number of repetitions for each experiment 

A. Plan and Execution 

Two Raspberry Pis were used in the experiments: one was 
stationary serving as an advertiser which broadcasted a BLE 
signal while the other was designated as a scanner collecting 
packets and recording them as csv files.  

• To ensure controllability/reproducibility of the data, the 
scanner Raspberry Pi which has a MPU-9250 chip (A 
9-axis Accelerometer-Gyroscope-Magnetometer 
inertial measurement sensor) was secured with a small 
vise that allows it to be set at different angles both 
horizontally and vertically (Figure II). 

Figure II. Scanner with MPU-9250 on a vise

 

• The experiments were carried out in multiple days 
where temperature and humidity variation were 
minimum and therefore not taken into consideration.  

• The reference code provided by MIT PiPact was 
modified to enable calibration and data collection from 
the MPU-9250 chip that was added to the Scanner Pi. 
The code was also configured to support the 
packetization of data and feed buckets into models 
Otherwise, the code remained unchanged.  

• The experiments were carried out in a large room with 
all the furniture removed.  The advertising Raspberry Pi 
is fixed on a small chair while the scanner Pi on an 
identical chair can be place at various distances from the 
broadcaster while the Bluetooth chips of both Pis are 
aligned in a straight line (tape measure on the floor) as 
shown in Figure III.  

Figure III. Experimental setup 

 

 The experiment was designed to be as uniform as possible 
between different measurements. Two identical chairs of equal 
heights were used to elevate the two Raspberry Pis and a 
measuring tape was used to mark off different distance intervals 
for the scanner to be moved.  

A-1. Distance vs RSSI 

In Experiment 1, the variability of RSSI measurement was 

established by taken a series RSSI value with the exact same 

condition at distance of 3 feet.  

 

In Experiment 2, a baseline was created by collecting 

measurements of the RSSI vs Distance in an ideal indoors 

scenario: everything was kept the same as much as possible; the 

two Raspberry Pi devices were elevated to the same height 



   

 

4 

 

while the distance between the two Raspberry Pis was varied 

between six intervals:  1, 3, 6, 8, 10, and 12 feet. They were also 

placed flat with ports facing each other to ensure proper 

alignment of the BLE chips. This minimizes any effects of 

orientation effects in this experiment, which was in the 

hypothesized to have an impact on the RSSI of the devices 

(Hypothesis 2). The position of the scanner was varied between 

intervals, whereas the advertiser remained stationary. At each 

distance, the scanner collected the BLE data from the advertiser 

for 4 minutes, resulting in approximately 250 measurements. 

These points were sorted into around 50 “buckets” each consist 

of the average of accumulated data during 5-second intervals. 

The term “bucket” will be explained with more depth in the 

Analysis and Algorithms Subsection.   

 

A-2. Effects of Oritations on RSSI 

In Experiment 3, the impact of vertical rotation of the 

scanner on the RSSI measurements was evaluated. Through 

these series of experiments, the distance between the Scanner 

and Advertiser was set constant at 3 feet and 6 feet. A vise was 

used to secure the Scanner while it was carefully rotated 

through the four different angles of 0, 90, 180, and 270 degrees 

on the vertical axis, with the vector horizontally pointing the 

Advertiser defined as 0 degree.  

 

In Experiment 4, the impact of horizontal rotation of the 

scanner on the RSSI was evaluated in similar fashion as 

Experiment 3, only the Scanner was rotated through the four 

different angles of 0, 90, 180, and 270 degrees on the  horizontal 

axis, with the vector horizontally pointing the Advertiser 

defined as 0 degree. 

 

A-3. Effects of Occlusion on RSSI 

In Experiment 5, the impact of occlusion on RSSI 

measurement was assessed by covering the Scanner with 

different materials, including none, jeans, cotton shirt, winter 

jacket, fleece, sweater and windbreaker (a very light jacket). 

The distance and orientation of the two Raspberry Pis were kept 

constant.  

 
 

   

 

 

 
  

B. Data Relevance 

Experiment 1 established the variability of measurement of 
RSSI in current setting.  

Experiment 2 was conducted to test Hypothesis 1, which 
states “BLE RSSI measurement can be used for distance 
determination in ideal situations”. 

Experiment 3, 4 and 5 were carried out to test Hypothesis 2, 
which states “Other factors, such as orientation of the advertiser 

and scanner will impact the accuracy of BLE Measurement”. 
The combined datasets will be used in the second round of 
traditional linear regression between distance and the measured 
RSSI value to test Hypothesis 3, which states “Traditional linear 
regression between the distance and RSSI Trendline can only 
work in ideal scenarios, but not fit for more complex real-life 
situation.”. And the results also will provide evidence that will 
test Hypothesis 4, which states “Adding additional sensors to 
assist the BLE    improves the accuracy”.  

 

C. Examples 

The variability of RSSI measurement was determined by 
data from Experiment 1. As shown in Figure IV, the RSSI can 
have a percent difference around roughly 3.2%, even in exact 
conditions. This established the baseline intrinsic variability for 
all other RSSI measurements. As such the threshold for a 
variable satisfying Hypothesis 2 was set as having a percent 
difference higher than 5%.  

Figure IVIV.  Percentage Difference of RSSI under Identical 

Conditions 

 

Hypothesis 1 was confirmed by data from Experiment 2 as 

shown in Figure V. A traditional linear regression of the 

measured RSSI vs the distance between the two Raspberry Pis 

yielded a correlation with R2 = 0.81 in the ideal and controlled 

indoor scenario. There is a steady inverse relationship between 

distance and RSSI measurement. Additionally, as the distance 

between the two devices increased, so did the amount of 

deviation.  

 
Figure V. RSSI VS Distance in Ideal Indoor Situation 
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Due to the effects of rotation, as presented by Experiment 3 
and 4, Hypothesis 2 was also confirmed.  

In Experiment 3, the relationship between vertical rotation 

and RSSI values at distance of both 3 feet and 6 feet were each 

measured twice. Even though the devices remained at a 

constant distance, the change in vertical rotation affected the 

RSSI value, as shown by the bars chat of percentage RSSI 

difference vs vertical angles in Figure VI. There was a 

maximum range of 12.7 dBm between the four different angles 

and a maximum percentage RSSI difference of 15.5%, 

statistically significant over the 5%, normal variability of RSSI 

established in Experiment 1.   
 

Figure VI. Percentage RSSI Difference vs Vertical Angles 

 

Similarly, Experiment 4 provided the relationship between 

horizontal rotation and RSSI at both 3 feet and 6 feet distances. 

Again, even though the distance between the two devices 

remained constant, the changes of horizontal orientation 

affected the RSSI measurement. In Figure VII, The RSSI value 

had a range of 20 dBm through the experiment and a maximum 

percent difference of 24.9%. The point at 90 degrees and 3 feet 

was believed to be an outlier, but this was retested six times, 

resulting in a maximum percent difference of 4.14% and a 

range of 5.9 dBm. 

Through Experiments 3 and 4 on angles, it was found that 

there is a larger variance at 3 feet than 6 feet. In experiment 3, 

vertical rotation, the Average percent difference was 5.6% at 3 

feet, whereas it was 1.9% at 6 feet.  In experiment 4, vertical 

rotation, the Average percent difference was 9.8% at 3 feet, 

whereas it was 3.1% at 6 feet. Given the threshold for 

significant percent difference established through experiment 1 

is 5%, rotation at 3 feet on average was a significant factor, 

whereas for 6 feet it was not found to be one. 
 

Figure VII. Percentage RSSI Difference vs Horizontal Angles 

 

Experiment 5 shows that there is some effect of different 
clothing on the RSSI measurement. However, due to the 
difficulty in determining the clothing of the user, this effect was 
deemed negligible and was ignored by the rest of the 
experiment.  

Figure VIII. Percentage RSSI Difference vs Different Occlusion 

 

. 

IV. ANALYSIS AND ALGORITHMS 

A. Description 

The MIT-Matrix Dataset is a dataset collected by PACT 

members. The MIT Testing protocol was used to collect it. Data 

from the Range, Angle, Activity, Bluetooth, Heading, 

Gyroscope, Attitude, Gravity, Magnetic-field, Pedometer, and 

Altitude sensors were all recorded as features in the collection. 

Data was collected at 10 distance intervals: 3, 4, 5, 6, 8, 10, 12, 

15 feet. 
The MIT-Matrix Dataset organizes its data in log files. Each 

entry that is recorded is of a specific sensor at a given timestamp. 
To efficiently feed the data into machine learning  models, pre-
processing of the log files was done by converting the log files 
into separate “buckets”. A bucket contains all the sensor 
readings that occurred during a certain time interval and each 
sensor data point is averaged. This means that once every bucket 
is processed, the size is the uniform, regardless if there were 
more readings in a specific bucket. This also helped remove the 
dimension of time, as the model can approach each bucket 
independently and make a prediction as to whether the devices 
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were within six feet during the time interval covered by the 
bucket. 

In the MIT-Matrix Dataset, each sensor reading was 
collected at different intervals and some sensors were not used 
in certain experiments. In the parser we wrote, any sensors that 
were not used throughout all the experiments in this dataset were 
removed because of the inconsistency it would cause between 
different buckets in the final processed dataset. For sensors 
missing in a bucket, but not an experiment, previous values from 
the same sensor were filled in instead by the parser. This is an 
inherently flawed assumption. However, due to the lack of data 
to begin with, the parser was designed to maximize the amount 
of the processed data the models could be trained on.  

The parser algorithm was written with Python, and 
periodically employed the use of various Python Modules.  To 
best explain this algorithm, we will split it into two sections: 
Bucket Collection and Bucket Processing.  

During the bucket collection period, data from the log files 
were read in and placed into a 3-level dictionary. This dictionary 
had three levels of keys: first the distance between the devices, 
then the bucket id, and the sensor name last. The log files were 
iterated through with the Python module OS. To find the bucket 
id, the difference between the starting time of the experiment 
(defined as the timestamp of the first entry) and the current 
entry’s timestamp was floor divided by the set size of the 
buckets.  

In the bucket processing section, the data in the multilevel 
dictionary created in the first section was compacted into one 
row of a CSV file.  To do this, the dictionary was iterated 
through and each bucket was processed with a helper function. 
In this function, the sensors of each bucket had all their values 
processed. If the sensor was missing in each given bucket, then 
a helper function backfilled with the last found value for the 
sensor. The resulting processed data was then dumped into a 
CSV file. 

The models from the Sklearn modules were then trained on 
the processed data set. These models were Linear Regression, 
Decision Tree Classifier, Random Forest Classifier, and Naïve 
Bayes Classifier.  

 Each of these models was trained on the processed data from 
the MIT-Matrix Dataset, which had 1161 data points. The 
training was repeated 5 times for each model architecture with 
randomized subsets of the data and the resultant models were 
pickled using the joblib module so that they could be loaded 
later.  

To select the best model, cross-validation experiments were 
executed, using the distance data collected on the in Experiment 
1.  The training and testing data were intentionally collected on 
different device types to test the robustness of the models. In 
addition, the metrics of Area Under the ROC Curve (AUC or 
AUROC), recall, and precision were recorded.  

Area Under Curve is calculated by taking the definite 
integral under the Receiver Operating Characteristic Curve 
(ROC Curve). The ROC Curve plots the True Positive Rate 
against the False Positive Rate at different classification 
thresholds. The lower the classification threshold, the more 

items marked positive, increasing the number of True and False 
positives. An example ROC from this experiment can be found 
in 0. The higher the AUC, the better the model performs. AUC 
was maximized in this experiment.  

Recall is the ratio of correctly predicted positive examples 
and actual positives. A model that only produces false negatives 
has a recall of zero, whereas a model that produces no false 
negatives has a recall of one. Recall is valued more when False 
Negatives are worse than False Positives in a problem. 

Precision is the ratio of correctly predicted positive examples 
and the total number of points predicted to be positive. A model 
that produces only false positives has a precision of zero, 
whereas a model producing no false positives has a precision of 
one. Precision is valued more when False Positives are worse 
than False Negatives. 

Recall is typically inverse to Precision. In this problem, the 
cost of a false positive is stress on a person for two weeks, who 
believes that they falsely were exposed. The cost of a False 
Negative is keeping someone who was exposed on the street and 
as a potential carrier. Thus, we believe the cost of a False 
Negatives is greater than that of a False Positive in this problem. 
Therefore, although both metrics were considered, we valued 
recall over precision in this experiment.  

To test Hypothesis 3 a linear regression model was trained 
on the MIT-Matrix Dataset and was compared to the classifiers 
in this experiment. To test Hypothesis 4, a linear regression 
model was trained only on Bluetooth Measurements in the MIT-
Matrix Dataset and compared to the AUC from the other models. 

 

B. Results and Examples 

The data collected in Experiment 2 was in the format of a N 

x 2 matrix. It was analyzed by a traditional linear regression 

model to evaluated whether or a linear relationship existed 

between RSSI and distance in an ideal situation. Evidence of a 

linear relationship would imply that Hypothesis 1, i.e. 

Bluetooth can be used for distance determination would be true. 

An R2 indicates the fit of the model to the data. Given an R2 of 

0.81, with a maximum of 1, we can reasonably conclude that 

there is a linear relationship between distance and RSSI, 

confirming Hypothesis 1. 
After combining all the data collected using Raspberry Pis 

including the ones from Experiment 3-5 where orientation and 
occlusion changes were included, another traditional linear 
regression analysis was performed on the whole Raspberry 
dataset. As shown in Figure IX. Traditional Linear Regression 
on Combined Raspberry Pi RSSI Data vs Distance, now the 
correlation only has R2 < 0.2.  This along with the result from 
Experiment 2, provided direct evidence to support Hypothesis 3, 
which states “Traditional linear regression between the distance 
and RSSI Trendline can only work in ideal scenarios, but are not 
fit for more complex real-life situations”.   
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Figure IX. Traditional Linear Regression on Combined Raspberry Pi 

RSSI Data vs Distance 

 

The data collected from the Pi in Experiments 1 - 5 was used 
to test all the models. Tables II-IV through show the results from 
these tests. To compare the models, the AUC and recall were 
used as primary metrics. Given this, the best model was the was 
Decision Tree 2, which had an AUC of 0.7, a recall of 0.46, and 
a precision of 0.89.  

This data also confirmed Hypothesis 5 “Machine Learning 
Classifiers will improve predictive accuracy compared to 
traditional regressive models”. The classifiers all vastly 
outperformed the regressor, which had an R2 value of less than 
0.2. On the other hand, all the Machine learning classifiers had 
an AUC greater than 0.49.  

 

FIGURE X. AN EXAMPLE ROC CURVE 

 

 

TABLE II.  DECISION TREE CLASSIFIER 

Model Number AUC Recall Precision 

Decision Tree 1 0.54 0.53 0.54 

Decision Tree 2 0.70 0.46 0.89 

Decision Tree 3 0.50 1.00 0.50 

Decision Tree 4 0.58 0.26 0.73 

Decision Tree 5 0.55 0.56 0.55 

TABLE III.  RANDOM FOREST  CLASSIFIER 

Model Number AUC Recall Precision 

Random Forest 6 0.69 0.38 1.00 

Random Forest 7 0.60 0.37 0.69 

Random Forest 8 0.62 0.25 1.00 

Random Forest 9 0.69 0.38 1.00 

Random Forest 10 0.60 0.19 1.00 

TABLE IV.  NAÏVE BAYES  

V. CONCLUSIONS 

A. Hypothesis Evaluation 

 Hypothesis 1, “BLE can be used for distance determination 
in ideal situations” was confirmed through Experiment 2. By 
proving this hypothesis, we reaffirmed the feasibility of BLE as 
an appropriate signal for contact tracing. Without this 
foundation to build on, there would be no reason to evaluate the 
remaining hypotheses. As shown in Section III-C, there is a clear 
negative linear relationship (Figure V) between RSSI and 
distance in between the two devices.  

 Hypothesis 2, “Other factors, such as orientation of the 
advertiser and scanner will impact the accuracy of BLE 
Measurement” was confirmed by results from Experiments 3-5. 
Specifically, our experimentation showed that horizontal and 
vertical orientation have a significant impact on RSSI. As shown 
in Section III-C, vertical and horizontal orientation of the 
scanner device have a significant impact on the RSSI signals. 
The impact of orientation is very relevant and significant to real-
life contact tracing because people naturally will have their 
phones in various orientations.  This justify the notion that we 
need extra sensor to gauge the phone orientation, which is 
exactly Hypothesis 4 calls for.  

 Hypothesis 3, “Traditional linear regression between the 
distance and RSSI Trendline can only work in ideal scenarios, 
but not fit for more complex real-life situation” was confirmed 
by both Hypothesis 2 and the combined Raspberry Pi data as 
described in Section IV-B.  

 Hypothesis 4, “Adding additional sensors to assist the 
Bluetooth sensor improves the accuracy” was also confirmed. 
As shown in Section IV, machine learning models that 
incorporate accelerometer and gyroscope readings in addition to 
RSSI signals have performed better, as evidenced by the greater 
AUC values. 

y = -1.6306x - 46.434
R² = 0.1924
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Model Number AUC Recall Precision 

Naïve Bayes 11 
0.50 0.00 0.00 

Naïve Bayes 12 
0.49 0.54 0.49 

Naïve Bayes 13 
0.50 0.45 0.50 

Naïve Bayes 14 
0.52 0.10 0.61 

Naïve Bayes 15 
0.51 0.01 1.00 
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 Hypothesis 5, “Creating Machine Learning Classifier will 
improve predictive accuracy compared to traditional regressive 
models” was also improved. As shown in Section IV, a total of 
15 machine learning classification models of three major types 
were trained and validated using MIT-Matrix data.  This led to 
a model whose AUC is 0.70 on the Raspberry pi data. The AUC 
of all three classification models were higher than that of the 
linear regression model, indicating superior performance of the 
classification method.  

 

B. Noteworthy Conclusions 

A noteworthy conclusion of these experiments is that device 
orientation has a significant impact on the measured RSSI 
signal. Accelerometer and gyroscope on a MPU-9250 chip were 
successfully used on Raspberry Pi scanner to provide relative 
device orientation data when combined with machine learning 
models can improve the accuracy. 

Another noteworthy conclusion is that machine leaning 
classifier is more effective than traditional linear regression 
method in estimating proximity.  

 

C. General Lessons Learned 

A general lesson learned is that external factors other than 
the distance affect RSSI measurement. These factors must be 
addressed so that BLE-based contact tracing correctly classify 
whether certain received BLE chirps belong to “too close” or 
not. Once that is correctly determined, the “too long” part of the 
contact tracing should be relatively easier to calculated. This is 
an important lesson for Bluetooth based contact tracing as it 
means that is imperative to incorporate other sensors to improve 
the accuracy. 

VI. NEXT STEPS 

I plan to take a few next steps to further improve the model 
accuracy. First, I would like to further compare the machine 
learning models used in these experiments and incorporate 
additional models. For example, I would like to divide the data 
set into training, validation, and testing triplet sets, so that I can 
objectively compare these models.  

After optimizing the machine learning model, I plan to port 
the model to the Raspberry Pi so it can generate “too close” 
classification real time which allows further calculation to 
address “too long” part of the contact tracing. This will also 
allow updating model real time on the device.  My current efforts 
to move the model to the Raspberry Pi were unsuccessful due to 
the different 32-bit architecture used on the Pi, which I hope to 
solve soon. 

Finally, I would like to collect additional data to improve my 
model, so that it can incorporate the impact from other factors, 
such as humidity, temperature, surroundings, the presence of 
conductors, and more. 
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